37 #include <tests/myratest.h> 44 std::vector<int> random_rows(
int I,
int N)
46 std::vector<int> answer;
47 for (
int n = 0; n < N; ++n)
48 answer.push_back( random_int(0,I) );
56 int J = Bv.
size().second;
58 for (
int j = 0; j < J; ++j)
59 for (
int i = 0; i < Bi.size(); ++i)
60 B_builder(Bi[i],j) = Bv(i,j);
61 return B_builder.make_SparseMatrix();
65 template<
class Precision>
void test(Precision tolerance)
78 for (
int n = 0; n < N; ++n)
84 Options options = Options::create().set_blocksize(4).set_globsize(4).set_nthreads(4);
97 Precision S_error = frobenius(S1.
make_Matrix(
'T')-S2)/frobenius(S2);
98 myra::out() <<
"|B'*inv(A)*B [dense] - B'*inv(A)*B [sparse]| = " << S_error << std::endl;
99 REQUIRE(S_error < tolerance);
105 auto Bi = random_rows(N,10);
107 auto B = fill(N,Bi,Bv);
108 auto S1 = solver.schur(Bi,Bv,options);
110 auto S2 = gemm(B.make_Matrix(),
'T',gemm(inverse(A.
make_Matrix()),B.make_Matrix()));
111 Precision S_error = frobenius(S1.
make_Matrix(
'T')-S2)/frobenius(S2);
112 myra::out() <<
"|schur(B)-schur(BiBv)| = " << S_error << std::endl;
113 REQUIRE(S_error < tolerance);
119 auto Bi = ilinspace(0,N);
121 Number S1 = solver.schur(Bi,Bv,options)(0,0);
126 Number S2 = dotu(Bv.
vector(0),Cv.vector(0));
127 Precision S_error = std::abs(S1-S2)/std::abs(S2);
128 myra::out() <<
"|schur(Bi,Bv)-dot(L\\Bv,L\\Bv))| = " << S_error << std::endl;
129 REQUIRE(S_error < tolerance);
140 Precision S_error = frobenius(S1-S2)/frobenius(S2);
141 myra::out() <<
"|C'*inv(A)*D [dense] - C'*inv(A)*D [sparse]| = " << S_error << std::endl;
142 REQUIRE(S_error < tolerance);
148 auto Bi = random_rows(N,10);
150 auto Ci = random_rows(N,10);
152 auto S1 = solver.schur(Bi,Bv,Ci,Cv,options);
154 auto B = fill(N,Bi,Bv);
155 auto C = fill(N,Ci,Cv);
156 auto S2 = gemm(B.make_Matrix(),
'T',gemm(inverse(A.
make_Matrix()),C.make_Matrix()));
157 Precision S_error = frobenius(S1-S2)/frobenius(S2);
158 myra::out() <<
"|schur(B,C)-schur(BiBv,CiCv)| = " << S_error << std::endl;
159 REQUIRE(S_error < tolerance);
164 auto Bi = ilinspace(0,N);
166 auto Ci = ilinspace(0,N);
168 Number S1 = solver.schur(Bi,Bv,Ci,Cv,options)(0,0);
173 Number S2 = dotu(Bv.
vector(0),Cv.vector(0));
174 Precision S_error = std::abs(S1-S2)/std::abs(S2);
175 myra::out() <<
"|schur(Bi,Bv)-dot(L\\Bv,L\\Bv))| = " << S_error << std::endl;
176 REQUIRE(S_error < tolerance);
183 ADD_TEST(
"zldlt2_schur",
"[multifrontal][parallel]")
185 test<double>(1.0e-8);
Sparse direct solver suitable for complex symmetric systems.
Definition: SparseZLDLTSolver.h:61
Interface class for representing subranges of dense Matrix's.
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Matrix< Number > make_Matrix(char op='N') const
Accumulates *this onto the lower triangle of a Matrix<Number>
Definition: LowerMatrix.cpp:152
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Sparse direct solver suitable for complex symmetric systems.
static SparseMatrix< Number > random(int I, int J, int N)
Generates a random SparseMatrix with size IxJ and (approximately) N nonzeros.
Definition: SparseMatrix.cpp:493
Reduces a std::vector to its unique entries, and sorts it.
General purpose compressed-sparse-column (CSC) container.
Range construct for a lower triangular matrix stored in rectangular packed format.
void sortunique(std::vector< T > &v)
Reduces a std::vector to its unique entries, and sorts it.
Definition: sortunique.h:20
Specialized container for a lower triangular matrix, O(N^2/2) storage. Used by symmetry exploiting ma...
Reflects a Precision type into a complex type.
Definition: Number.h:46
Routines for inner products of Vector's / VectorRange's.
Various utility functions/classes related to scalar Number types.
Returns a vector of int's, over [min,max)
General purpose dense matrix container, O(i*j) storage.
Overwrites a LowerMatrix, DiagonalMatrix, or square Matrix with its own inverse. Or, returns it as a copy.
Aggregates a (perm, iperm, swaps) triple into a vocabulary type.
Convenience type for building SparseMatrix's, uses coordinate/triplet format.
Definition: SparseMatrix.h:32
std::pair< int, int > size() const
Size inspector.
Definition: Matrix.cpp:116
Convenience type for building SparseMatrix's, uses coordinate/triplet format. Note that SparseMatrixB...
CVectorRange< Number > vector(int j) const
Returns the j'th column as a VectorRange.
Definition: Matrix.cpp:154
Stores a lower triangular matrix in rectangular packed format.
Definition: conjugate.h:22
Stores an IxJ matrix A in compressed sparse column format.
Definition: bothcat.h:23
Helper routines for reordering/filling 2D structured grids. Used by many unit tests.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.
Applies random phase shifts to a complex square SparseMatrix.
Range/Iterator types associated with SparseMatrix.
Matrix< Number > make_Matrix() const
Accumulates *this onto a Matrix<Number>.
Definition: SparseMatrix.cpp:581
Interface class for representing subranges of contiguous int's.
|B'*inv(A)*B [dense] - B'*inv(A)*B [sparse]| = 3.71176e-14
|schur(B)-schur(BiBv)| = 3.44232e-14
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 1.52267e-14
|C'*inv(A)*D [dense] - C'*inv(A)*D [sparse]| = 3.44319e-14
|schur(B,C)-schur(BiBv,CiCv)| = 3.54289e-14
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 1.60637e-15