32 #include <tests/myratest.h>    38 template<
class Precision> 
void test(
int I, 
int J, Precision tolerance)
    40   myra::out() << typestring<Precision>() << std::endl;  
    41   typedef std::complex<Precision> Number;
    45   Precision shift = 5.5;
    46   for (
int n = 0; n < N; ++n)
    52   Options options = Options::create().set_blocksize(8).set_globsize(4).set_nthreads(1);
    57   std::vector<int> Ri(20,0);
    58   for (
int i = 0; i < Ri.size(); ++i)
    59     Ri[i] = random_int(N);
    62   std::vector<int> Rj(30,0);
    63   for (
int j = 0; j < Rj.size(); ++j)
    64     Rj[j] = random_int(N);
    73     Precision error_N = frobenius( gemm(Z,
'N',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'N') );
    74     Precision error_T = frobenius( gemm(Z,
'T',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'T') );
    75     Precision error_H = frobenius( gemm(Z,
'H',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'H') );
    76     Precision error_C = frobenius( gemm(Z,
'C',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'C') );
    77     myra::out() << 
"  error in Z^N * B = " << error_N << std::endl;
    78     myra::out() << 
"  error in Z^T * B = " << error_T << std::endl;
    79     myra::out() << 
"  error in Z^H * B = " << error_H << std::endl;
    80     myra::out() << 
"  error in Z^C * B = " << error_C << std::endl;
    81     REQUIRE(error_N < tolerance);
    82     REQUIRE(error_T < tolerance);
    83     REQUIRE(error_H < tolerance);
    84     REQUIRE(error_C < tolerance);
    90     Precision error_N = frobenius( gemm(B1,Z,
'N') - solver.partialsolve(Ri,Rj,B1,
'R',
'N') );
    91     Precision error_T = frobenius( gemm(B2,Z,
'T') - solver.partialsolve(Ri,Rj,B2,
'R',
'T') );
    92     Precision error_H = frobenius( gemm(B2,Z,
'H') - solver.partialsolve(Ri,Rj,B2,
'R',
'H') );
    93     Precision error_C = frobenius( gemm(B1,Z,
'C') - solver.partialsolve(Ri,Rj,B1,
'R',
'C') );
    94     myra::out() << 
"  error in B * Z^N = " << error_N << std::endl;
    95     myra::out() << 
"  error in B * Z^T = " << error_T << std::endl;
    96     myra::out() << 
"  error in B * Z^H = " << error_H << std::endl;
    97     myra::out() << 
"  error in B * Z^C = " << error_C << std::endl;
    98     REQUIRE(error_N < tolerance);
    99     REQUIRE(error_T < tolerance);
   100     REQUIRE(error_H < tolerance);
   101     REQUIRE(error_C < tolerance);
   107 ADD_TEST(
"zldlh2_partialsolve",
"[multifrontal][parallel]")
   108   { test<double>(20,20,1.0e-8); }
 Interface class for representing subranges of dense Matrix's. 
Options pack for routines in /multifrontal. 
Definition: Options.h:24
Sparse direct solver suitable for complex hermitian indefinite systems. 
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Routines for computing Frobenius norms of various algebraic containers. 
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size. 
Definition: Matrix.cpp:353
Reduces a std::vector to its unique entries, and sorts it. 
Sparse direct solver suitable for complex hermitian indefinite systems. 
Definition: SparseZLDLHSolver.h:60
General purpose compressed-sparse-column (CSC) container. 
void sortunique(std::vector< T > &v)
Reduces a std::vector to its unique entries, and sorts it. 
Definition: sortunique.h:20
Various utility functions/classes related to scalar Number types. 
General purpose dense matrix container, O(i*j) storage. 
Aggregates a (perm, iperm, swaps) triple into a vocabulary type. 
Simplistic random number functions. 
Stores an IxJ matrix A in compressed sparse column format. 
Definition: bothcat.h:23
Helper routines for reordering/filling 2D structured grids. Used by many unit tests. 
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS. 
Applies random phase shifts to a complex square SparseMatrix. 
Range/Iterator types associated with SparseMatrix. 
Interface class for representing subranges of contiguous int's. 
double
  error in Z^N * B = 2.12795e-13
  error in Z^T * B = 2.27052e-13
  error in Z^H * B = 2.06101e-13
  error in Z^C * B = 2.16886e-13
  error in B * Z^N = 2.01989e-13
  error in B * Z^T = 2.30751e-13
  error in B * Z^H = 2.0471e-13
  error in B * Z^C = 2.30177e-13