36 #include <tests/myratest.h> 43 std::vector<int> random_rows(
int I,
int N)
45 std::vector<int> answer;
46 for (
int n = 0; n < N; ++n)
47 answer.push_back( random_int(0,I) );
55 int J = Bv.
size().second;
57 for (
int j = 0; j < J; ++j)
58 for (
int i = 0; i < Bi.size(); ++i)
59 B_builder(Bi[i],j) = Bv(i,j);
60 return B_builder.make_SparseMatrix();
64 template<
class Precision>
void test(Precision tolerance)
80 Options options = Options::create().set_blocksize(4).set_globsize(4).set_nthreads(4);
93 Precision S_error = frobenius(S1.
make_Matrix(
'H')-S2)/frobenius(S2);
94 myra::out() <<
"|B'*inv(A)*B [dense] - B'*inv(A)*B [sparse]| = " << S_error << std::endl;
95 REQUIRE(S_error < tolerance);
101 auto Bi = random_rows(N,10);
103 auto B = fill(N,Bi,Bv);
104 auto S1 = solver.schur(Bi,Bv,options);
106 auto S2 = gemm(B.make_Matrix(),
'H',gemm(inverse(A.
make_Matrix()),B.make_Matrix()));
107 Precision S_error = frobenius(S1.
make_Matrix(
'H')-S2)/frobenius(S2);
108 myra::out() <<
"|schur(B)-schur(BiBv)| = " << S_error << std::endl;
109 REQUIRE(S_error < tolerance);
115 auto Bi = ilinspace(0,N);
117 Number S1 = solver.schur(Bi,Bv,options)(0,0);
121 Precision S_error = std::abs(S1-S2)/std::abs(S2);
122 myra::out() <<
"|schur(Bi,Bv)-dot(L\\Bv,L\\Bv))| = " << S_error << std::endl;
123 REQUIRE(S_error < tolerance);
134 Precision S_error = frobenius(S1-S2)/frobenius(S2);
135 myra::out() <<
"|C'*inv(A)*D [dense] - C'*inv(A)*D [sparse]| = " << S_error << std::endl;
136 REQUIRE(S_error < tolerance);
142 auto Bi = random_rows(N,10);
144 auto Ci = random_rows(N,10);
146 auto S1 = solver.schur(Bi,Bv,Ci,Cv,options);
148 auto B = fill(N,Bi,Bv);
149 auto C = fill(N,Ci,Cv);
150 auto S2 = gemm(B.make_Matrix(),
'H',gemm(inverse(A.
make_Matrix()),C.make_Matrix()));
151 Precision S_error = frobenius(S1-S2)/frobenius(S2);
152 myra::out() <<
"|schur(B,C)-schur(BiBv,CiCv)| = " << S_error << std::endl;
153 REQUIRE(S_error < tolerance);
158 auto Bi = ilinspace(0,N);
160 auto Ci = ilinspace(0,N);
162 Number S1 = solver.schur(Bi,Bv,Ci,Cv,options)(0,0);
166 Number S2 = dot(Bv.
vector(0),Cv.vector(0));
167 Precision S_error = std::abs(S1-S2)/std::abs(S2);
168 myra::out() <<
"|schur(Bi,Bv)-dot(L\\Bv,L\\Bv))| = " << S_error << std::endl;
169 REQUIRE(S_error < tolerance);
176 ADD_TEST(
"zcholesky2_schur",
"[multifrontal][parallel]")
178 test<float>(1.0e-4f);
179 test<double>(1.0e-8);
Interface class for representing subranges of dense Matrix's.
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Matrix< Number > make_Matrix(char op='N') const
Accumulates *this onto the lower triangle of a Matrix<Number>
Definition: LowerMatrix.cpp:152
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Sparse direct solver suitable for hermitian positive definite systems.
static SparseMatrix< Number > random(int I, int J, int N)
Generates a random SparseMatrix with size IxJ and (approximately) N nonzeros.
Definition: SparseMatrix.cpp:493
Reduces a std::vector to its unique entries, and sorts it.
General purpose compressed-sparse-column (CSC) container.
Range construct for a lower triangular matrix stored in rectangular packed format.
void sortunique(std::vector< T > &v)
Reduces a std::vector to its unique entries, and sorts it.
Definition: sortunique.h:20
Specialized container for a lower triangular matrix, O(N^2/2) storage. Used by symmetry exploiting ma...
Reflects a Precision type into a complex type.
Definition: Number.h:46
Routines for inner products of Vector's / VectorRange's.
Returns a vector of int's, over [min,max)
General purpose dense matrix container, O(i*j) storage.
Overwrites a LowerMatrix, DiagonalMatrix, or square Matrix with its own inverse. Or, returns it as a copy.
Aggregates a (perm, iperm, swaps) triple into a vocabulary type.
Convenience type for building SparseMatrix's, uses coordinate/triplet format.
Definition: SparseMatrix.h:32
Sparse direct solver suitable for hermitian positive definite systems.
Definition: SparseZCholeskySolver.h:61
std::pair< int, int > size() const
Size inspector.
Definition: Matrix.cpp:116
Convenience type for building SparseMatrix's, uses coordinate/triplet format. Note that SparseMatrixB...
CVectorRange< Number > vector(int j) const
Returns the j'th column as a VectorRange.
Definition: Matrix.cpp:154
Stores a lower triangular matrix in rectangular packed format.
Definition: conjugate.h:22
Stores an IxJ matrix A in compressed sparse column format.
Definition: bothcat.h:23
Helper routines for reordering/filling 2D structured grids. Used by many unit tests.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.
Applies random phase shifts to a complex square SparseMatrix.
Range/Iterator types associated with SparseMatrix.
Matrix< Number > make_Matrix() const
Accumulates *this onto a Matrix<Number>.
Definition: SparseMatrix.cpp:581
Interface class for representing subranges of contiguous int's.
|B'*inv(A)*B [dense] - B'*inv(A)*B [sparse]| = 1.55229e-07
|schur(B)-schur(BiBv)| = 1.94353e-07
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 6.00614e-07
|C'*inv(A)*D [dense] - C'*inv(A)*D [sparse]| = 3.05684e-07
|schur(B,C)-schur(BiBv,CiCv)| = 1.92332e-07
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 6.13198e-07
|B'*inv(A)*B [dense] - B'*inv(A)*B [sparse]| = 2.46697e-16
|schur(B)-schur(BiBv)| = 4.39655e-16
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 5.00086e-16
|C'*inv(A)*D [dense] - C'*inv(A)*D [sparse]| = 6.05179e-16
|schur(B,C)-schur(BiBv,CiCv)| = 8.87199e-16
|schur(Bi,Bv)-dot(L\Bv,L\Bv))| = 1.15114e-15