26 #include <tests/myratest.h> 36 myra::out() << typestring<Number>() << std::endl;
40 Number alpha = random<Number>();
41 Precision beta = random<Precision>();
46 C1 = C1 + hermitian(C1);
48 gemm_inplace(C1,A,
'N',B,
'H',alpha,beta);
49 gemm_inplace(C1,B,
'N',A,
'H',conjugate(alpha),one);
50 her2k_inplace(C2,
'U',A,B,
'N',alpha,beta);
51 Precision error = frobenius(triu(C1-C2));
52 myra::out() <<
" |her2k('N')-gemm('N','H')| = " << error << std::endl;
53 REQUIRE(error < tolerance);
58 C1 = C1 + hermitian(C1);
60 gemm_inplace(C1,A,
'T',B,
'C',alpha,beta);
61 gemm_inplace(C1,B,
'T',A,
'C',conjugate(alpha),one);
62 her2k_inplace(C2,
'U',A,B,
'T',alpha,beta);
63 Precision error = frobenius(triu(C1-C2));
64 myra::out() <<
" |her2k('T')-gemm('T','C')| = " << error << std::endl;
65 REQUIRE(error < tolerance);
70 C1 = C1 + hermitian(C1);
72 gemm_inplace(C1,A,
'C',B,
'T',alpha,beta);
73 gemm_inplace(C1,B,
'C',A,
'T',conjugate(alpha),one);
74 her2k_inplace(C2,
'U',A,B,
'C',alpha,beta);
75 Precision error = frobenius(triu(C1-C2));
76 myra::out() <<
" |her2k('C')-gemm('C','T')| = " << error << std::endl;
77 REQUIRE(error < tolerance);
82 C1 = C1 + hermitian(C1);
84 gemm_inplace(C1,A,
'H',B,
'N',alpha,beta);
85 gemm_inplace(C1,B,
'H',A,
'N',conjugate(alpha),one);
86 her2k_inplace(C2,
'U',A,B,
'H',alpha,beta);
87 Precision error = frobenius(triu(C1-C2));
88 myra::out() <<
" |herk('H')-gemm('H','N')| = " << error << std::endl;
89 REQUIRE(error < tolerance);
95 ADD_TEST(
"sher2kU",
"[dense][blas]")
96 { test<NumberS>(57,24,1.0e-4f); }
98 ADD_TEST(
"dher2kU",
"[dense][blas]")
99 { test<NumberD>(57,24,1.0e-8); }
101 ADD_TEST(
"cher2kU",
"[dense][blas]")
102 { test<NumberC>(57,24,1.0e-4f); }
104 ADD_TEST(
"zher2kU",
"[dense][blas]")
105 { test<NumberZ>(57,24,1.0e-8); }
Returns a conjugated copy of a Matrix or Vector. Or, conjugate one inplace.
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Routines for hermitian rank-2k updates, a specialized form of Matrix*Matrix multiplication.
Returns a transposed copy of a Matrix. The inplace version only works on a square operand...
Returns the upper triangle of a dense Matrix.
Various utility functions/classes related to scalar Number types.
General purpose dense matrix container, O(i*j) storage.
Reflects Precision trait for a Number, scalar Number types should specialize it.
Definition: Number.h:33
Returns a hermitian copy of a Matrix. The inplace version only works on a square operand.
Simplistic random number functions.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.
float
|her2k('N')-gemm('N','H')| = 0
|her2k('T')-gemm('T','C')| = 0
|her2k('C')-gemm('C','T')| = 0
|herk('H')-gemm('H','N')| = 0