31 #include <tests/myratest.h> 37 template<
class Precision>
void test(
int I,
int J, Precision tolerance)
39 myra::out() << typestring<Precision>() << std::endl;
43 Precision shift = 5.5;
44 for (
int n = 0; n < N; ++n)
49 Options options = Options::create().set_blocksize(8).set_globsize(4).set_nthreads(1);
54 std::vector<int> Ri(20,0);
55 for (
int i = 0; i < Ri.size(); ++i)
56 Ri[i] = random_int(N);
59 std::vector<int> Rj(30,0);
60 for (
int j = 0; j < Rj.size(); ++j)
61 Rj[j] = random_int(N);
70 Precision error_N = frobenius( gemm(Z,
'N',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'N') );
71 Precision error_T = frobenius( gemm(Z,
'T',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'T') );
72 Precision error_H = frobenius( gemm(Z,
'H',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'H') );
73 Precision error_C = frobenius( gemm(Z,
'C',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'C') );
74 myra::out() <<
" error in Z^N * B = " << error_N << std::endl;
75 myra::out() <<
" error in Z^T * B = " << error_T << std::endl;
76 myra::out() <<
" error in Z^H * B = " << error_H << std::endl;
77 myra::out() <<
" error in Z^C * B = " << error_C << std::endl;
78 REQUIRE(error_N < tolerance);
79 REQUIRE(error_T < tolerance);
80 REQUIRE(error_H < tolerance);
81 REQUIRE(error_C < tolerance);
87 Precision error_N = frobenius( gemm(B1,Z,
'N') - solver.partialsolve(Ri,Rj,B1,
'R',
'N') );
88 Precision error_T = frobenius( gemm(B2,Z,
'T') - solver.partialsolve(Ri,Rj,B2,
'R',
'T') );
89 Precision error_H = frobenius( gemm(B2,Z,
'H') - solver.partialsolve(Ri,Rj,B2,
'R',
'H') );
90 Precision error_C = frobenius( gemm(B1,Z,
'C') - solver.partialsolve(Ri,Rj,B1,
'R',
'C') );
91 myra::out() <<
" error in B * Z^N = " << error_N << std::endl;
92 myra::out() <<
" error in B * Z^T = " << error_T << std::endl;
93 myra::out() <<
" error in B * Z^H = " << error_H << std::endl;
94 myra::out() <<
" error in B * Z^C = " << error_C << std::endl;
95 REQUIRE(error_N < tolerance);
96 REQUIRE(error_T < tolerance);
97 REQUIRE(error_H < tolerance);
98 REQUIRE(error_C < tolerance);
104 ADD_TEST(
"rldlt2_partialsolve",
"[multifrontal][parallel]")
105 { test<double>(20,20,1.0e-8); }
Interface class for representing subranges of dense Matrix's.
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Sparse direct solver suitable for real symmetric indefinite systems.
Definition: SparseRLDLTSolver.h:61
Reduces a std::vector to its unique entries, and sorts it.
General purpose compressed-sparse-column (CSC) container.
void sortunique(std::vector< T > &v)
Reduces a std::vector to its unique entries, and sorts it.
Definition: sortunique.h:20
Various utility functions/classes related to scalar Number types.
General purpose dense matrix container, O(i*j) storage.
Aggregates a (perm, iperm, swaps) triple into a vocabulary type.
Simplistic random number functions.
Sparse direct solver suitable for real symmetric indefinite systems.
Stores an IxJ matrix A in compressed sparse column format.
Definition: bothcat.h:23
Helper routines for reordering/filling 2D structured grids. Used by many unit tests.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.
Range/Iterator types associated with SparseMatrix.
Interface class for representing subranges of contiguous int's.
double
error in Z^N * B = 1.03766e-13
error in Z^T * B = 1.22516e-13
error in Z^H * B = 1.22516e-13
error in Z^C * B = 1.03766e-13
error in B * Z^N = 1.19607e-13
error in B * Z^T = 1.27355e-13
error in B * Z^H = 1.27355e-13
error in B * Z^C = 1.19607e-13