31 #include <tests/myratest.h> 39 myra::out() << typestring<Number>() << std::endl;
47 Options options = Options::create().set_blocksize(4).set_globsize(4).set_nthreads(1);
52 std::vector<int> Ri(20,0);
53 for (
int i = 0; i < Ri.size(); ++i)
54 Ri[i] = random_int(N);
57 std::vector<int> Rj(30,0);
58 for (
int j = 0; j < Rj.size(); ++j)
59 Rj[j] = random_int(N);
68 Precision error_N = frobenius( gemm(Z,
'N',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'N') );
69 Precision error_T = frobenius( gemm(Z,
'T',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'T') );
70 Precision error_H = frobenius( gemm(Z,
'H',B2) - solver.partialsolve(Ri,Rj,B2,
'L',
'H') );
71 Precision error_C = frobenius( gemm(Z,
'C',B1) - solver.partialsolve(Ri,Rj,B1,
'L',
'C') );
72 myra::out() <<
" error in Z^N * B = " << error_N << std::endl;
73 myra::out() <<
" error in Z^T * B = " << error_T << std::endl;
74 myra::out() <<
" error in Z^H * B = " << error_H << std::endl;
75 myra::out() <<
" error in Z^C * B = " << error_C << std::endl;
76 REQUIRE(error_N < tolerance);
77 REQUIRE(error_T < tolerance);
78 REQUIRE(error_H < tolerance);
79 REQUIRE(error_C < tolerance);
85 Precision error_N = frobenius( gemm(B1,Z,
'N') - solver.partialsolve(Ri,Rj,B1,
'R',
'N') );
86 Precision error_T = frobenius( gemm(B2,Z,
'T') - solver.partialsolve(Ri,Rj,B2,
'R',
'T') );
87 Precision error_H = frobenius( gemm(B2,Z,
'H') - solver.partialsolve(Ri,Rj,B2,
'R',
'H') );
88 Precision error_C = frobenius( gemm(B1,Z,
'C') - solver.partialsolve(Ri,Rj,B1,
'R',
'C') );
89 myra::out() <<
" error in B * Z^N = " << error_N << std::endl;
90 myra::out() <<
" error in B * Z^T = " << error_T << std::endl;
91 myra::out() <<
" error in B * Z^H = " << error_H << std::endl;
92 myra::out() <<
" error in B * Z^C = " << error_C << std::endl;
93 REQUIRE(error_N < tolerance);
94 REQUIRE(error_T < tolerance);
95 REQUIRE(error_H < tolerance);
96 REQUIRE(error_C < tolerance);
102 ADD_TEST(
"lu2_partialsolve",
"[multifrontal][parallel]")
104 test<NumberD>(20,20,1.0e-10);
105 test<NumberZ>(20,20,1.0e-10);
Interface class for representing subranges of dense Matrix's.
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Reduces a std::vector to its unique entries, and sorts it.
General purpose compressed-sparse-column (CSC) container.
void sortunique(std::vector< T > &v)
Reduces a std::vector to its unique entries, and sorts it.
Definition: sortunique.h:20
Various utility functions/classes related to scalar Number types.
Sparse direct solver suitable for symmetric-pattern nonsymmetric-value A.
General purpose dense matrix container, O(i*j) storage.
Sparse direct solver suitable for symmetric-pattern nonsymmetric-valued A.
Definition: SparseLUSolver.h:57
Reflects Precision trait for a Number, scalar Number types should specialize it.
Definition: Number.h:33
Aggregates a (perm, iperm, swaps) triple into a vocabulary type.
Simplistic random number functions.
Stores an IxJ matrix A in compressed sparse column format.
Definition: bothcat.h:23
Helper routines for reordering/filling 2D structured grids. Used by many unit tests.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.
Range/Iterator types associated with SparseMatrix.
Interface class for representing subranges of contiguous int's.
double
error in Z^N * B = 2.73396e-16
error in Z^T * B = 2.25136e-16
error in Z^H * B = 2.25136e-16
error in Z^C * B = 2.73396e-16
error in B * Z^N = 2.42228e-16
error in B * Z^T = 2.79062e-16
error in B * Z^H = 2.79062e-16
error in B * Z^C = 2.42228e-16
std::complex<double>
error in Z^N * B = 2.99762e-16
error in Z^T * B = 2.81363e-16
error in Z^H * B = 2.81363e-16
error in Z^C * B = 3.56507e-16
error in B * Z^N = 2.58783e-16
error in B * Z^T = 2.62462e-16
error in B * Z^H = 2.62462e-16
error in B * Z^C = 3.31214e-16