MyraMath
dsyr2kU


Source: tests/dense/syr2k2.cpp

1 // ========================================================================= //
2 // This file is part of MyraMath, copyright (c) 2014-2019 by Ryan A Chilton //
3 // and distributed by MyraCore, LLC. See LICENSE.txt for license terms. //
4 // ========================================================================= //
5 
11 // Containers.
13 #include <myramath/dense/Matrix.h>
14 
15 // Algorithms.
17 #include <myramath/dense/gemm.h>
18 #include <myramath/dense/syr2k.h>
23 #include <myramath/dense/triu.h>
24 
25 // Reporting.
26 #include <tests/myratest.h>
27 
28 using namespace myra;
29 
30 namespace {
31 
32 template<class Number> void test(int I, int J, typename ReflectPrecision<Number>::type tolerance)
33  {
34  // Useful typedef.
35  typedef typename ReflectPrecision<Number>::type Precision;
36  myra::out() << typestring<Number>() << std::endl;
37  // Make random nonsquare matrices A and B
38  auto A = Matrix<Number>::random(I,J);
39  auto B = Matrix<Number>::random(I,J);
40  Number alpha = random<Number>();
41  Number beta = random<Number>();
42  Number one(1);
43  // Compare syr2k_inplace('N') to gemm_inplace(A,'N',B,'T'); gemm_inplace(B,'N',A,'T');
44  {
45  auto C1 = Matrix<Number>::random(I,I);
46  Matrix<Number> C2 = C1;
47  gemm_inplace(C1,A,'N',B,'T',alpha,beta);
48  gemm_inplace(C1,B,'N',A,'T',alpha,one);
49  syr2k_inplace(C2,'U',A,B,'N',alpha,beta);
50  Precision error = frobenius(triu(C1-C2));
51  myra::out() << " |syr2k('N')-gemm('N','T')| = " << error << std::endl;
52  REQUIRE(error < tolerance);
53  }
54  // Compare syr2k_inplace('T') to gemm_inplace(A,'T',B,'N'); gemm_inplace(B,'T',A,'N');
55  {
56  auto C1 = Matrix<Number>::random(J,J);
57  Matrix<Number> C2 = C1;
58  gemm_inplace(C1,A,'T',B,'N',alpha,beta);
59  gemm_inplace(C1,B,'T',A,'N',alpha,one);
60  syr2k_inplace(C2,'U',A,B,'T',alpha,beta);
61  Precision error = frobenius(triu(C1-C2));
62  myra::out() << " |syr2k('T')-gemm('T','N')| = " << error << std::endl;
63  REQUIRE(error < tolerance);
64  }
65  // Compare syr2k_inplace('C') to gemm_inplace(A,'C',B,'H'); gemm_inplace(B,'C',A,'H');
66  {
67  auto C1 = Matrix<Number>::random(I,I);
68  Matrix<Number> C2 = C1;
69  gemm_inplace(C1,A,'C',B,'H',alpha,beta);
70  gemm_inplace(C1,B,'C',A,'H',alpha,one);
71  syr2k_inplace(C2,'U',A,B,'C',alpha,beta);
72  Precision error = frobenius(triu(C1-C2));
73  myra::out() << " |syr2k('C')-gemm('C','H')| = " << error << std::endl;
74  REQUIRE(error < tolerance);
75  }
76  // Compare syr2k_inplace('H') to gemm_inplace(A,'H',B,'C'); gemm_inplace(B,'H',A,'C');
77  {
78  auto C1 = Matrix<Number>::random(J,J);
79  Matrix<Number> C2 = C1;
80  gemm_inplace(C1,A,'H',B,'C',alpha,beta);
81  gemm_inplace(C1,B,'H',A,'C',alpha,one);
82  syr2k_inplace(C2,'U',A,B,'H',alpha,beta);
83  Precision error = frobenius(triu(C1-C2));
84  myra::out() << " |syrk('H')-gemm('H','C')| = " << error << std::endl;
85  REQUIRE(error < tolerance);
86  }
87  }
88 
89 } // namespace
90 
91 ADD_TEST("ssyr2kU","[dense][blas]")
92  { test<NumberS>(57,24,1.0e-4f); }
93 
94 ADD_TEST("dsyr2kU","[dense][blas]")
95  { test<NumberD>(57,24,1.0e-8); }
96 
97 ADD_TEST("csyr2kU","[dense][blas]")
98  { test<NumberC>(57,24,1.0e-4f); }
99 
100 ADD_TEST("zhsy2kU","[dense][blas]")
101  { test<NumberZ>(57,24,1.0e-8); }
102 
Returns a conjugated copy of a Matrix or Vector. Or, conjugate one inplace.
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Routines for computing Frobenius norms of various algebraic containers.
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size.
Definition: Matrix.cpp:353
Definition: syntax.dox:1
Returns a transposed copy of a Matrix. The inplace version only works on a square operand...
Returns the upper triangle of a dense Matrix.
Various utility functions/classes related to scalar Number types.
Routines for symmetric rank-2k updates, a specialized form of Matrix*Matrix multiplication.
General purpose dense matrix container, O(i*j) storage.
Reflects Precision trait for a Number, scalar Number types should specialize it.
Definition: Number.h:33
Returns a hermitian copy of a Matrix. The inplace version only works on a square operand.
Simplistic random number functions.
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.


Results: [PASS]

double
|syr2k('N')-gemm('N','T')| = 0
|syr2k('T')-gemm('T','N')| = 0
|syr2k('C')-gemm('C','H')| = 0
|syrk('H')-gemm('H','C')| = 0


Go back to Summary of /test programs.