29 #include <tests/myratest.h>    39   myra::out() << typestring<Number>() << std::endl;
    45   Number alpha = random<Number>();
    51     trmm_inplace(
'L',
'N',L,X,diag,alpha);
    52     Precision error = frobenius(B-X);
    53     myra::out() << 
"  |L*X (gemm) - L*X (trmm)| = " << error << std::endl;
    54     REQUIRE(error < tolerance);
    60     trmm_inplace(
'L',
'T',L,X,diag,alpha);
    61     Precision error = frobenius(B-X);
    62     myra::out() << 
"  |transpose(L)*X (gemm) - transpose(L)*X (trmm)| = " << error << std::endl;  
    63     REQUIRE(error < tolerance);
    69     trmm_inplace(
'L',
'H',L,X,diag,alpha);
    70     Precision error = frobenius(B-X);
    71     myra::out() << 
"  |hermitian(L)*X (gemm) - hermitian(L)*X (trmm)| = " << error << std::endl;  
    72     REQUIRE(error < tolerance);
    78     trmm_inplace(
'L',
'C',L,X,diag,alpha);
    79     Precision error = frobenius(B-X);
    80     myra::out() << 
"  |conjugate(L)*X (gemm) - conjugate(L)*X (trmm)| = " << error << std::endl;  
    81     REQUIRE(error < tolerance);
    87     trmm_inplace(
'R',
'N',L,X,diag,alpha);
    88     Precision error = frobenius(B-X);
    89     myra::out() << 
"  |X*L (gemm) - X*L (trmm)| = " << error << std::endl;
    90     REQUIRE(error < tolerance);
    96     trmm_inplace(
'R',
'T',L,X,diag,alpha);
    97     Precision error = frobenius(B-X);
    98     myra::out() << 
"  |X*transpose(L) (gemm) - X*tranpose(L) (trmm)| = " << error << std::endl;
    99     REQUIRE(error < tolerance);
   105     trmm_inplace(
'R',
'H',L,X,diag,alpha);
   106     Precision error = frobenius(B-X);
   107     myra::out() << 
"  |X*hermitian(L) (gemm) - X*hermitian(L) (trmm)| = " << error << std::endl;
   108     REQUIRE(error < tolerance);
   114     trmm_inplace(
'R',
'C',L,X,diag,alpha);
   115     Precision error = frobenius(B-X);
   116     myra::out() << 
"  |X*conjugate(L) (gemm) - X*conjugate(L) (trmm)| = " << error << std::endl;
   117     REQUIRE(error < tolerance);
   123 ADD_TEST(
"strmmLower",
"[dense][lapack]")
   124   { test<NumberS>(1.0e-4f); }
   126 ADD_TEST(
"dtrmmLower",
"[dense][lapack]")
   127   { test<NumberD>(1.0e-10); }
   129 ADD_TEST(
"ctrmmLower",
"[dense][lapack]")
   130   { test<NumberC>(1.0e-4f); }
   132 ADD_TEST(
"ztrmmLower",
"[dense][lapack]")
   133   { test<NumberZ>(1.0e-10); }
 Returns a conjugated copy of a Matrix or Vector. Or, conjugate one inplace. 
Interface class for representing subranges of dense Matrix's. 
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Routines for computing Frobenius norms of various algebraic containers. 
static Matrix< Number > random(int I, int J)
Generates a random Matrix of specified size. 
Definition: Matrix.cpp:353
Range construct for a lower triangular matrix stored in rectangular packed format. 
Routines for multiplying by a triangular Matrix or LowerMatrix. 
Specialized container for a lower triangular matrix, O(N^2/2) storage. Used by symmetry exploiting ma...
Returns a transposed copy of a Matrix. The inplace version only works on a square operand...
Returns the lower triangle of a dense Matrix. 
Various utility functions/classes related to scalar Number types. 
General purpose dense matrix container, O(i*j) storage. 
Reflects Precision trait for a Number, scalar Number types should specialize it. 
Definition: Number.h:33
Returns a hermitian copy of a Matrix. The inplace version only works on a square operand. 
Simplistic random number functions. 
Stores a lower triangular matrix in rectangular packed format. 
Definition: conjugate.h:22
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS. 
std::complex<float>
  |L*X (gemm) - L*X (trmm)| = 1.01721e-05
  |transpose(L)*X (gemm) - transpose(L)*X (trmm)| = 1.00582e-05
  |hermitian(L)*X (gemm) - hermitian(L)*X (trmm)| = 1.00225e-05
  |conjugate(L)*X (gemm) - conjugate(L)*X (trmm)| = 1.02346e-05
  |X*L (gemm) - X*L (trmm)| = 9.17293e-06
  |X*transpose(L) (gemm) - X*tranpose(L) (trmm)| = 7.18328e-06
  |X*hermitian(L) (gemm) - X*hermitian(L) (trmm)| = 7.63883e-06
  |X*conjugate(L) (gemm) - X*conjugate(L) (trmm)| = 8.72497e-06