6 #ifndef MYRAMATH_MULTIFRONTAL_LU_SCHURSOLVEL_H 7 #define MYRAMATH_MULTIFRONTAL_LU_SCHURSOLVEL_H 14 #include <myramath/multifrontal/detail/schursolve.h> 17 namespace multifrontal {
19 namespace schursolvel {
21 template<
class Number>
class JobGraphBase :
public ::myra::multifrontal::detail::schursolve::JobGraphBase2<Number>
27 typedef ::myra::multifrontal::detail::schursolve::JobGraphBase2<Number> Base;
30 typedef ::myra::multifrontal::detail::lu::LUContainer<Kernel>
LUContainer;
31 typedef ::myra::multifrontal::detail::XContainer<Number>
XContainer;
32 typedef ::myra::multifrontal::detail::XContributor<Number> XContributor;
35 JobGraphBase(
const LUContainer* in_lucontainer, XContainer* in_xcontainer,
const XContributor* in_xcontributor)
36 : Base(&in_xcontainer->tree(), in_xcontainer, in_xcontributor), lucontainer(in_lucontainer), xcontainer(in_xcontainer), xcontributor(in_xcontributor) { }
39 virtual ::myra::JobGraphBase* clone()
const 45 const Kernel& l(
int n,
int ij)
const 46 {
return lucontainer->lu(this->s2a(n),ij); }
48 {
return lucontainer->lu(this->s2a(n),i,j); }
51 virtual uint64_t backsolve(
int n,
int k,
int j)
54 if (k == 0) this->assign_contributions(n,k,j);
55 const Kernel& Ln_kk = this->l(n,k);
57 return Ln_kk.
solveL(Bn_kj,
'L',
'N');
61 virtual uint64_t downdate(
int n,
int k,
int i,
int j)
71 Number beta = k ? one : zero;
72 uint64_t w = gemm_nwork(Bn_ij, Ln_ik,
'N', Xn_kj,
'N', -one, beta);
74 if (k == 0) this->add_contributions(n,i,j);
81 const LUContainer* lucontainer;
84 XContainer* xcontainer;
85 const XContributor* xcontributor;
Definition: schursolvel.h:21
Represents a const MatrixRange.
Definition: bothcat.h:22
Factors A into L*U, presents solve methods.
Definition: Kernel.h:35
Represents a mutable MatrixRange.
Definition: conjugate.h:26
uint64_t solveL(const MatrixRange< Number > &B, char side, char op) const
Solves op(L)*X=B or X*op(L)=B, overwrites B with X.
Definition: Kernel.h:66
Definition: partialsolve.h:32
Definition: schurgemm.h:25