6 #ifndef MYRAMATH_MULTIFRONTAL_RLDLT_FACTOR_H     7 #define MYRAMATH_MULTIFRONTAL_RLDLT_FACTOR_H    14 #include <myramath/multifrontal/detail/llt/factor.h>    25 #include <myramath/dense/detail/nwork.h>    28 namespace multifrontal {
    32 template<
class Precision> 
class JobGraphBase : 
public ::myra::multifrontal::detail::llt::factor::JobGraphBase2<RLDLTKernel<Precision> >
    37     typedef Precision Number;
    39     typedef ::myra::multifrontal::detail::llt::factor::JobGraphBase2<Kernel> Base;
    42     typedef ::myra::multifrontal::detail::llt::LContainer<Kernel> LContainer;
    47        : Base(in_lcontainer), lcontainer(in_lcontainer) { }
    50     virtual ::myra::JobGraphBase* clone()
 const    56     virtual uint64_t factor(
int n, 
int k)
    59       if (k == 0) this->assign_contributions(n,k); 
    60       return lcontainer->factor(n,k);
    64     virtual uint64_t trsm(
int n, 
int k, 
int i)
    67       if (k == 0) this->assign_contributions(n,i,k); 
    69       const Kernel& Ln_kk = this->l(n,k);
    70       uint64_t w = Ln_kk.
solveL(An_ik,
'R',
'T');
    76     virtual uint64_t rankk(
int n, 
int k, 
int ij)
    85       Number beta = k ? one : zero;
    87       std::pair<int,int> inertia = this->l(n,k).inertia();
    89       w += syrk_nwork(An_ij, Ln_ijk. left(inertia.first) , 
'N', -one, beta);
    90       w += syrk_nwork(An_ij, Ln_ijk.
right(inertia.second), 
'N',  one, one );
    92       if (k == 0) this->add_contributions(n,ij);
    97     virtual uint64_t gemm(
int n, 
int k, 
int i, 
int j)
   107       Number beta = k ? one : zero;
   109       std::pair<int,int> inertia = this->l(n,k).inertia();
   111       w += gemm_nwork(An_ij, Ln_ik. left(inertia.first ), 
'N', Ln_jk. left(inertia.first ), 
'T', -one, beta);
   112       w += gemm_nwork(An_ij, Ln_ik.
right(inertia.second), 
'N', Ln_jk.
right(inertia.second), 
'T',  one, one );
   114       if (k == 0) this->add_contributions(n,i,j);
   121     LContainer* lcontainer;
 Factors A into L*L', presents solve methods. 
Definition: Kernel.h:38
Interface class for representing subranges of dense Matrix's. 
Pivot factorization for SparseRLDLTSolver. 
Represents a mutable LowerMatrixRange. 
Definition: conjugate.h:28
uint64_t solveL(const MatrixRange< Precision > &B, char side, char op) const
Solves op(L)*X=B or X*op(L)=B, overwrites B with X. 
Definition: Kernel.h:76
Range construct for a lower triangular matrix stored in rectangular packed format. 
Represents a const MatrixRange. 
Definition: bothcat.h:22
void solveI(const MatrixRange< Precision > &B, char side) const
Solves I*X=B or X*I=B, overwrites B with X. 
Definition: Kernel.h:134
Routines for backsolving by a triangular Matrix or LowerMatrix. 
Specialized container for a lower triangular matrix, O(N^2/2) storage. Used by symmetry exploiting ma...
CMatrixRange< Number > right(int j) const
Returns the j rightmost columns, this(:,J-j:J) 
Definition: MatrixRange.cpp:596
Represents a mutable MatrixRange. 
Definition: conjugate.h:26
General purpose dense matrix container, O(i*j) storage. 
Stores a lower triangular matrix in rectangular packed format. 
Definition: conjugate.h:22
Routines for symmetric rank-k updates, a specialized form of Matrix*Matrix multiplication. 
Variety of routines all for dense Matrix*Matrix multiplies. Delegates to the BLAS.