Routines for orthogonalizing column vectors via classical and modified gram-schmidt.
More...
|
|
|
NumberS | myra::cgs_inplace (const CVectorRange< NumberS > &q, const VectorRange< NumberS > &v) |
| | Orthogonalize v against q via classical gram-schmidt, v = (I-qq')*v, returns q'v.
|
| |
|
NumberD | myra::cgs_inplace (const CVectorRange< NumberD > &q, const VectorRange< NumberD > &v) |
| | Orthogonalize v against q via classical gram-schmidt, v = (I-qq')*v, returns q'v.
|
| |
|
NumberC | myra::cgs_inplace (const CVectorRange< NumberC > &q, const VectorRange< NumberC > &v) |
| | Orthogonalize v against q via classical gram-schmidt, v = (I-qq')*v, returns q'v.
|
| |
|
NumberZ | myra::cgs_inplace (const CVectorRange< NumberZ > &q, const VectorRange< NumberZ > &v) |
| | Orthogonalize v against q via classical gram-schmidt, v = (I-qq')*v, returns q'v.
|
| |
|
|
Vector< NumberS > | myra::cgs_inplace (const CMatrixRange< NumberS > &Q, const VectorRange< NumberS > &v) |
| | Orthogonalizes v against Q via classical gram-schmidt, v = (I-QQ')*v, returns Q'v.
|
| |
|
Vector< NumberD > | myra::cgs_inplace (const CMatrixRange< NumberD > &Q, const VectorRange< NumberD > &v) |
| | Orthogonalizes v against Q via classical gram-schmidt, v = (I-QQ')*v, returns Q'v.
|
| |
|
Vector< NumberC > | myra::cgs_inplace (const CMatrixRange< NumberC > &Q, const VectorRange< NumberC > &v) |
| | Orthogonalizes v against Q via classical gram-schmidt, v = (I-QQ')*v, returns Q'v.
|
| |
|
Vector< NumberZ > | myra::cgs_inplace (const CMatrixRange< NumberZ > &Q, const VectorRange< NumberZ > &v) |
| | Orthogonalizes v against Q via classical gram-schmidt, v = (I-QQ')*v, returns Q'v.
|
| |
|
|
Matrix< NumberS > | myra::cgs_inplace (const CMatrixRange< NumberS > &Q, const MatrixRange< NumberS > &V) |
| | Orthogonalizes V against Q via classical gram-schmidt, V = (I-QQ')*V, returns Q'V.
|
| |
|
Matrix< NumberD > | myra::cgs_inplace (const CMatrixRange< NumberD > &Q, const MatrixRange< NumberD > &V) |
| | Orthogonalizes V against Q via classical gram-schmidt, V = (I-QQ')*V, returns Q'V.
|
| |
|
Matrix< NumberC > | myra::cgs_inplace (const CMatrixRange< NumberC > &Q, const MatrixRange< NumberC > &V) |
| | Orthogonalizes V against Q via classical gram-schmidt, V = (I-QQ')*V, returns Q'V.
|
| |
|
Matrix< NumberZ > | myra::cgs_inplace (const CMatrixRange< NumberZ > &Q, const MatrixRange< NumberZ > &V) |
| | Orthogonalizes V against Q via classical gram-schmidt, V = (I-QQ')*V, returns Q'V.
|
| |
|
|
void | myra::mgs_inplace (const MatrixRange< NumberS > &A, const MatrixRange< NumberS > &R) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Ovewrites R such that A=Q*R.
|
| |
|
void | myra::mgs_inplace (const MatrixRange< NumberD > &A, const MatrixRange< NumberD > &R) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Ovewrites R such that A=Q*R.
|
| |
|
void | myra::mgs_inplace (const MatrixRange< NumberC > &A, const MatrixRange< NumberC > &R) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Ovewrites R such that A=Q*R.
|
| |
|
void | myra::mgs_inplace (const MatrixRange< NumberZ > &A, const MatrixRange< NumberZ > &R) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Ovewrites R such that A=Q*R.
|
| |
|
|
Matrix< NumberS > | myra::mgs_inplace (const MatrixRange< NumberS > &A) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Returns R such that A=Q*R.
|
| |
|
Matrix< NumberD > | myra::mgs_inplace (const MatrixRange< NumberD > &A) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Returns R such that A=Q*R.
|
| |
|
Matrix< NumberC > | myra::mgs_inplace (const MatrixRange< NumberC > &A) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Returns R such that A=Q*R.
|
| |
|
Matrix< NumberZ > | myra::mgs_inplace (const MatrixRange< NumberZ > &A) |
| | Overwrites A with orthonormal columns Q via modified gram-schmidt. Returns R such that A=Q*R.
|
| |
|
|
std::pair< Matrix< NumberS >, Matrix< NumberS > > | myra::mgs (const CMatrixRange< NumberS > &A) |
| | Factors A = Q*R, where Q is orthogonal and R is upper triangular.
|
| |
|
std::pair< Matrix< NumberD >, Matrix< NumberD > > | myra::mgs (const CMatrixRange< NumberD > &A) |
| | Factors A = Q*R, where Q is orthogonal and R is upper triangular.
|
| |
|
std::pair< Matrix< NumberC >, Matrix< NumberC > > | myra::mgs (const CMatrixRange< NumberC > &A) |
| | Factors A = Q*R, where Q is orthogonal and R is upper triangular.
|
| |
|
std::pair< Matrix< NumberZ >, Matrix< NumberZ > > | myra::mgs (const CMatrixRange< NumberZ > &A) |
| | Factors A = Q*R, where Q is orthogonal and R is upper triangular.
|
| |
Routines for orthogonalizing column vectors via classical and modified gram-schmidt.