MyraMath
SparseRCholeskySolver.h
Go to the documentation of this file.
1 // ========================================================================= //
2 // This file is part of MyraMath, copyright (c) 2014-2019 by Ryan A Chilton //
3 // and distributed by MyraCore, LLC. See LICENSE.txt for license terms. //
4 // ========================================================================= //
5 
6 #ifndef MYRAMATH_MULTIFRONTAL_SPARSERCHOLESKYSOLVER_H
7 #define MYRAMATH_MULTIFRONTAL_SPARSERCHOLESKYSOLVER_H
8 
14 #include <myramath/MYRAMATH_EXPORT.h>
15 
16 // For ReflectNumber<>
18 
19 // Return type for all _jobgraph() methods.
21 
22 // Options pack.
24 
25 // Underlying numeric storage.
27 #include <myramath/multifrontal/detail/llt/LContainer.h>
28 
29 // Permutation type.
30 #include <vector>
31 
32 namespace myra {
33 
34 // Forward declarations, components.
35 class AssemblyTree;
36 template<class Precision> class RCholeskyKernel;
37 
38 // Forward declarations, A type.
39 class Permutation;
40 template<class Number> class SparseMatrix;
41 template<class Number> class SparseMatrixRange;
42 template<class Number> class CSparseMatrixRange;
43 
44 // Forward declarations, X/B types.
45 class intCRange;
46 template <class Number> class Matrix;
47 template <class Number> class MatrixRange;
48 template <class Number> class CMatrixRange;
49 template <class Number> class Vector;
50 template <class Number> class VectorRange;
51 template <class Number> class CVectorRange;
52 template <class Number> class LowerMatrix;
53 template <class Number> class LowerMatrixRange;
54 template <class Number> class CLowerMatrixRange;
55 
56 // Forward declarations, serialization.
57 class InputStream;
58 class OutputStream;
59 
61 template<class Precision> class MYRAMATH_EXPORT SparseRCholeskySolver
62  {
63  public:
64 
65  // Useful typedefs for various dense/sparse ranges.
66  typedef Precision Number;
67  typedef MatrixRange<Number> DRange; // Dense range type (e.g. right hand sides)
68  typedef LowerMatrixRange<Number> LRange; // Lower range type (e.g. symmetric schur complement)
69  typedef CSparseMatrixRange<Number> SRange; // Sparse range type (e.g. underlying A)
70  typedef intCRange iRange; // Indices range type (e.g. stencils for partial solve etc)
71 
72  // Typedef for Options pack.
73  typedef ::myra::multifrontal::Options Options;
74 
75  // ----------------------------------------- Construction, serialization, value semantics.
76 
79 
82 
84  void swap(SparseRCholeskySolver& that);
85 
86 #ifdef MYRAMATH_ENABLE_CPP11
89 #endif
90 
93 
95  explicit SparseRCholeskySolver(InputStream& in);
96 
98  void write(OutputStream& out) const;
99 
102 
103  // ----------------------------------------- Factorization and factorizing constructors.
104 
106  SparseRCholeskySolver(const SRange& A, Options options = defaults());
107  void factor(const SRange& A, Options options = defaults());
108  JobGraph factor_jobgraph(const SRange& A, Options options = defaults());
109 
111  SparseRCholeskySolver(const SRange& A, const Permutation& P, Options options = defaults());
112  void factor(const SRange& A, const Permutation& P, Options options = defaults());
113  JobGraph factor_jobgraph(const SRange& A, const Permutation& P, Options options = defaults());
114 
116  SparseRCholeskySolver(const SRange& A, const AssemblyTree& tree, Options options = defaults());
117  void factor(const SRange& A, const AssemblyTree& tree, Options options = defaults());
118  JobGraph factor_jobgraph(const SRange& A, const AssemblyTree& tree, Options options = defaults());
119 
120  // ----------------------------------------- Linear solution.
121 
123  // side = Solve by A from the 'L'eft or from the 'R'ight?
124  // op = Apply an operation to A? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
125  void solve(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
126  JobGraph solve_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
127 
129  // side = Solve by L from the 'L'eft or from the 'R'ight?
130  // op = Apply an operation to L? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
131  void solveL(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
132  JobGraph solveL_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
133 
134  // ----------------------------------------- Calculating schur complements.
135 
137  LowerMatrix<Number> schur(const SRange& B, Options options = defaults()) const;
138  void schur_inplace(const SRange& B, const LRange& S, Options options = defaults()) const;
139  JobGraph schur_jobgraph(const SRange& B, const LRange& S, Options options = defaults()) const;
140 
142  LowerMatrix<Number> schur(const iRange& Bi, const DRange& Bv, Options options = defaults()) const;
143  void schur_inplace(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
144  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
145 
147  Matrix<Number> schur(const SRange& B, const SRange& C, Options options = defaults()) const;
148  void schur_inplace(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
149  JobGraph schur_jobgraph(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
150 
152  Matrix<Number> schur(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, Options options = defaults()) const;
153  void schur_inplace(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
154  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
155 
156  // ----------------------------------------- Sampling inv(A).
157 
159  Number inverse(int ij) const;
160 
162  Number inverse(int i, int j) const;
163 
165  Matrix<Number> inverse(const iRange& i, const iRange& j, Options options = defaults()) const;
166  void inverse_inplace(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
167  JobGraph inverse_jobgraph(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
168 
170  LowerMatrix<Number> inverse(const iRange& ij, Options options = defaults()) const;
171  void inverse_inplace(const iRange& ij, const LRange& Z, Options options = defaults()) const;
172  JobGraph inverse_jobgraph(const iRange& ij, const LRange& Z, Options options = defaults()) const;
173 
174  // ----------------------------------------- Partial linear solution.
175 
177  // Note X = partialsolve(linspace(0,N),linspace(0,N),B,side,op) yields the same result X = solve(B,side,op)
178  // Note X = partialsolve(i,j,B,'L'eft, op) yields the same result as X = op(this->inverse(i,j))*B
179  // Note X = partialsolve(i,j,B,'R'ight,op) yields the same result as X = B*op(this->inverse(i,j))
180  Matrix<Number> partialsolve(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
181  void partialsolve_inplace(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
182  JobGraph partialsolve_jobgraph(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
183 
184  // ----------------------------------------- Miscellany.
185 
187  int size() const;
188 
190  const AssemblyTree& tree() const;
191 
193  static Options defaults();
194 
195  private:
196 
197  // Numeric contents.
199  typedef multifrontal::detail::llt::LContainer<Kernel> LContainer;
200  LContainer L;
201 
202  };
203 
205 template<class Precision> class ReflectNumber <SparseRCholeskySolver<Precision> >
206  { public: typedef Precision type; };
207 
209 MYRAMATH_EXPORT Vector<NumberS> operator * (const SparseRCholeskySolver<NumberS>& solver, const CVectorRange<NumberS>& x);
211 MYRAMATH_EXPORT Vector<NumberD> operator * (const SparseRCholeskySolver<NumberD>& solver, const CVectorRange<NumberD>& x);
213 
215 MYRAMATH_EXPORT Matrix<NumberS> operator * (const SparseRCholeskySolver<NumberS>& solver, const CMatrixRange<NumberS>& X);
217 MYRAMATH_EXPORT Matrix<NumberD> operator * (const SparseRCholeskySolver<NumberD>& solver, const CMatrixRange<NumberD>& X);
219 
220 } // namespace myra
221 
222 #endif
Reflects Number trait for a Container, containers of Numbers (Matrix&#39;s, Vector&#39;s, etc) should special...
Definition: Number.h:55
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Symbolic analysis data structure for all multifrontal solvers.
Definition: AssemblyTree.h:38
Represents a mutable LowerMatrixRange.
Definition: conjugate.h:28
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Type erasure class that wraps JobGraphBase, gives it value semantics.
Definition: JobGraph.h:64
Definition: syntax.dox:1
Represents a const MatrixRange.
Definition: bothcat.h:22
Abstraction layer, serializable objects write themselves to these.
Definition: Streams.h:39
Abstraction for representing a directed acyclic graph of Job&#39;s.
Various utility functions/classes related to scalar Number types.
Pivot factorization for SparseRCholeskySolver.
Represents a mutable MatrixRange.
Definition: conjugate.h:26
Abstraction layer, deserializable objects read themselves from these.
Definition: Streams.h:47
Represents a const SparseMatrixRange.
Definition: bothcat.h:24
Options pack for routines in /multifrontal.
Tabulates a vector of length N, allows random access.
Definition: conjugate.h:21
Represents a const VectorRange.
Definition: axpy.h:20
Sparse direct solver suitable for real symmetric positive definite systems.
Definition: SparseRCholeskySolver.h:61
Factors A into L*L&#39;, presents solve methods.
Definition: Kernel.h:34
Stores a lower triangular matrix in rectangular packed format.
Definition: conjugate.h:22
Represents a const intRange.
Definition: intRange.h:142