MyraMath
SparseRLDLTSolver.h
Go to the documentation of this file.
1 // ========================================================================= //
2 // This file is part of MyraMath, copyright (c) 2014-2019 by Ryan A Chilton //
3 // and distributed by MyraCore, LLC. See LICENSE.txt for license terms. //
4 // ========================================================================= //
5 
6 #ifndef MYRAMATH_MULTIFRONTAL_SPARSERLDLTSOLVER_H
7 #define MYRAMATH_MULTIFRONTAL_SPARSERLDLTSOLVER_H
8 
14 #include <myramath/utility/detail/LIBPUBLIC.h>
15 
16 // For ReflectNumber<>
18 
19 // Return type for all _jobgraph() methods.
21 
22 // Options pack.
24 
25 // Underlying numeric storage.
27 #include <myramath/multifrontal/detail/llt/LContainer.h>
28 
29 // Permutation type.
30 #include <vector>
31 
32 namespace myra {
33 
34 // Forward declarations, components.
35 class AssemblyTree;
36 template <class Precision> class RLDLTKernel;
37 
38 // Forward declarations, A type.
39 class Permutation;
40 template<class Number> class SparseMatrix;
41 template<class Number> class SparseMatrixRange;
42 template<class Number> class CSparseMatrixRange;
43 
44 // Forward declarations, X/B types.
45 class intCRange;
46 template <class Number> class Matrix;
47 template <class Number> class MatrixRange;
48 template <class Number> class CMatrixRange;
49 template <class Number> class Vector;
50 template <class Number> class VectorRange;
51 template <class Number> class CVectorRange;
52 template <class Number> class LowerMatrix;
53 template <class Number> class LowerMatrixRange;
54 template <class Number> class CLowerMatrixRange;
55 
56 // Forward declarations, serialization.
57 class InputStream;
58 class OutputStream;
59 
61 template<class Precision> class LIBPUBLIC SparseRLDLTSolver
62  {
63  public:
64 
65  // Useful typedefs for various dense/sparse ranges.
66  typedef Precision Number;
67  typedef MatrixRange<Number> DRange; // Dense range type (e.g. right hand sides)
68  typedef LowerMatrixRange<Number> LRange; // Lower range type (e.g. symmetric schur complement)
69  typedef CSparseMatrixRange<Number> SRange; // Sparse range type (e.g. underlying A)
70  typedef intCRange iRange; // Indices range type (e.g. stencils for partial solve etc)
71 
72  // Typedef for Options pack.
73  typedef ::myra::multifrontal::Options Options;
74 
75  // ----------------------------------------- Construction, serialization, value semantics.
76 
79 
82 
84  void swap(SparseRLDLTSolver& that);
85 
86 #ifdef MYRAMATH_ENABLE_CPP11
89 #endif
90 
92  SparseRLDLTSolver& operator = (SparseRLDLTSolver that);
93 
95  explicit SparseRLDLTSolver(InputStream& in);
96 
98  void write(OutputStream& out) const;
99 
100  // ----------------------------------------- Factorization and factorizing constructors.
101 
103  SparseRLDLTSolver(const SRange& in_A, Options options = defaults());
104  void factor(const SRange& A, Options options = defaults());
105  JobGraph factor_jobgraph(const SRange& A, Options options = defaults());
106 
108  SparseRLDLTSolver(const SRange& in_A, const Permutation& P, Options options = defaults());
109  void factor(const SRange& in_A, const Permutation& P, Options options = defaults());
110  JobGraph factor_jobgraph(const SRange& in_A, const Permutation& P, Options options = defaults());
111 
113  SparseRLDLTSolver(const SRange& in_A, const AssemblyTree& tree, Options options = defaults());
114  void factor(const SRange& in_A, const AssemblyTree& tree, Options options = defaults());
115  JobGraph factor_jobgraph(const SRange& in_A, const AssemblyTree& tree, Options options = defaults());
116 
117  // ----------------------------------------- Linear solution.
118 
120  // side = Solve by A from the 'L'eft or from the 'R'ight?
121  // op = Apply an operation to A? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
122  void solve(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
123  JobGraph solve_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
124 
126  // side = Solve by L from the 'L'eft or from the 'R'ight?
127  // op = Apply an operation to L? ('T'ranspose or 'N'othing)
128  void solveL(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
129  JobGraph solveL_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
130 
132  // side = Solve by D from the 'L'eft or from the 'R'ight?
133  // Since D is filled with +1/-1's only, there's no op modifier (they'd all do the same thing)
134  void solveD(const DRange& B, char side = 'L') const;
135 
136  // ----------------------------------------- Solution with refinement.
137 
139  // side = Solve by A from the 'L'eft or from the 'R'ight?
140  // op = Apply an operation to A? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
141  // Note, this is more expensive because it calls solve() multiple times, and sparse symm() too.
142  // Returns the history of the relative residual, frobenius(A*X-B)/frobenius(B)
143  std::vector<Precision> refine(const DRange& B, char side = 'L', char op = 'N', Precision tolerance = default_tolerance(), int iterations = default_iterations(), Options options = defaults().set_nthreads(1)) const;
145  friend class SparseRLDLTSolver_RefineAction;
146 
147  // ----------------------------------------- Calculating schur complements.
148 
150  LowerMatrix<Number> schur(const SRange& B, Options options = defaults()) const;
151  void schur_inplace(const SRange& B, const LRange& S, Options options = defaults()) const;
152  JobGraph schur_jobgraph(const SRange& B, const LRange& S, Options options = defaults()) const;
153 
155  LowerMatrix<Number> schur(const iRange& Bi, const DRange& Bv, Options options = defaults()) const;
156  void schur_inplace(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
157  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
158 
160  Matrix<Number> schur(const SRange& B, const SRange& C, Options options = defaults()) const;
161  void schur_inplace(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
162  JobGraph schur_jobgraph(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
163 
165  Matrix<Number> schur(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, Options options = defaults()) const;
166  void schur_inplace(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
167  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
168 
169  // ----------------------------------------- Sampling inv(A).
170 
172  Number inverse(int ij) const;
173 
175  Number inverse(int i, int j) const;
176 
178  Matrix<Number> inverse(const iRange& i, const iRange& j, Options options = defaults()) const;
179  void inverse_inplace(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
180  JobGraph inverse_jobgraph(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
181 
183  LowerMatrix<Number> inverse(const iRange& ij, Options options = defaults()) const;
184  void inverse_inplace(const iRange& ij, const LRange& Z, Options options = defaults()) const;
185  JobGraph inverse_jobgraph(const iRange& ij, const LRange& Z, Options options = defaults()) const;
186 
187  // ----------------------------------------- Partial linear solution.
188 
190  // Note X = partialsolve(linspace(0,N),linspace(0,N),B,side,op) yields the same result X = solve(B,side,op)
191  // Note X = partialsolve(i,j,B,'L'eft, op) yields the same result as X = op(this->inverse(i,j))*B
192  // Note X = partialsolve(i,j,B,'R'ight,op) yields the same result as X = B*op(this->inverse(i,j))
193  Matrix<Number> partialsolve(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
194  void partialsolve_inplace(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
195  JobGraph partialsolve_jobgraph(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
196 
197  // ----------------------------------------- Miscellany.
198 
200  int size() const;
201 
203  std::pair<int,int> inertia() const;
204 
206  const AssemblyTree& tree() const;
207 
209  static Options defaults();
210  static Precision default_tolerance();
211  static int default_iterations();
212 
213  private:
214 
215  // Numeric contents.
217  typedef ::myra::multifrontal::detail::llt::LContainer<Kernel> LContainer;
218  LContainer L;
219 
220  };
221 
223 template<class Precision> class ReflectNumber <SparseRLDLTSolver<Precision> >
224  { public: typedef Precision type; };
225 
227 LIBPUBLIC Vector<NumberS> operator * (const SparseRLDLTSolver<NumberS>& solver, const CVectorRange<NumberS>& x);
229 LIBPUBLIC Vector<NumberD> operator * (const SparseRLDLTSolver<NumberD>& solver, const CVectorRange<NumberD>& x);
231 
233 LIBPUBLIC Matrix<NumberS> operator * (const SparseRLDLTSolver<NumberS>& solver, const CMatrixRange<NumberS>& X);
235 LIBPUBLIC Matrix<NumberD> operator * (const SparseRLDLTSolver<NumberD>& solver, const CMatrixRange<NumberD>& X);
237 
238 } // namespace myra
239 
240 #endif
Factors A into L*L&#39;, presents solve methods.
Definition: Kernel.h:38
Definition: SparseRLDLTSolver.cpp:268
Reflects Number trait for a Container, containers of Numbers (Matrix&#39;s, Vector&#39;s, etc) should special...
Definition: Number.h:55
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Symbolic analysis data structure for all multifrontal solvers.
Definition: AssemblyTree.h:38
Pivot factorization for SparseRLDLTSolver.
Represents a mutable LowerMatrixRange.
Definition: conjugate.h:28
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Sparse direct solver suitable for real symmetric indefinite systems.
Definition: SparseRLDLTSolver.h:61
Type erasure class that wraps JobGraphBase, gives it value semantics.
Definition: JobGraph.h:64
Definition: syntax.dox:1
Represents a const MatrixRange.
Definition: bothcat.h:22
Abstraction layer, serializable objects write themselves to these.
Definition: Streams.h:39
Abstraction for representing a directed acyclic graph of Job&#39;s.
Various utility functions/classes related to scalar Number types.
Represents a mutable MatrixRange.
Definition: conjugate.h:26
Abstraction layer, deserializable objects read themselves from these.
Definition: Streams.h:47
Represents a const SparseMatrixRange.
Definition: bothcat.h:24
Options pack for routines in /multifrontal.
Tabulates a vector of length N, allows random access.
Definition: conjugate.h:21
Represents a const VectorRange.
Definition: axpy.h:20
Stores a lower triangular matrix in rectangular packed format.
Definition: conjugate.h:22
Represents a const intRange.
Definition: intRange.h:142