MyraMath
SparseRCholeskySolver.h
Go to the documentation of this file.
1 // ========================================================================= //
2 // This file is part of MyraMath, copyright (c) 2014-2019 by Ryan A Chilton //
3 // and distributed by MyraCore, LLC. See LICENSE.txt for license terms. //
4 // ========================================================================= //
5 
6 #ifndef MYRAMATH_MULTIFRONTAL_SPARSERCHOLESKYSOLVER_H
7 #define MYRAMATH_MULTIFRONTAL_SPARSERCHOLESKYSOLVER_H
8 
14 #include <myramath/utility/detail/LIBPUBLIC.h>
15 
16 // For ReflectNumber<>
18 
19 // Return type for all _jobgraph() methods.
21 
22 // Options pack.
24 
25 // Underlying numeric storage.
27 #include <myramath/multifrontal/detail/llt/LContainer.h>
28 
29 // Permutation type.
30 #include <vector>
31 
32 namespace myra {
33 
34 // Forward declarations, components.
35 class AssemblyTree;
36 template<class Precision> class RCholeskyKernel;
37 
38 // Forward declarations, A type.
39 class Permutation;
40 template<class Number> class SparseMatrix;
41 template<class Number> class SparseMatrixRange;
42 template<class Number> class CSparseMatrixRange;
43 
44 // Forward declarations, X/B types.
45 class intCRange;
46 template <class Number> class Matrix;
47 template <class Number> class MatrixRange;
48 template <class Number> class CMatrixRange;
49 template <class Number> class Vector;
50 template <class Number> class VectorRange;
51 template <class Number> class CVectorRange;
52 template <class Number> class LowerMatrix;
53 template <class Number> class LowerMatrixRange;
54 template <class Number> class CLowerMatrixRange;
55 
56 // Forward declarations, serialization.
57 class InputStream;
58 class OutputStream;
59 
61 template<class Precision> class LIBPUBLIC SparseRCholeskySolver
62  {
63  public:
64 
65  // Useful typedefs for various dense/sparse ranges.
66  typedef Precision Number;
67  typedef MatrixRange<Number> DRange; // Dense range type (e.g. right hand sides)
68  typedef LowerMatrixRange<Number> LRange; // Lower range type (e.g. symmetric schur complement)
69  typedef CSparseMatrixRange<Number> SRange; // Sparse range type (e.g. underlying A)
70  typedef intCRange iRange; // Indices range type (e.g. stencils for partial solve etc)
71 
72  // Typedef for Options pack.
73  typedef ::myra::multifrontal::Options Options;
74 
75  // ----------------------------------------- Construction, serialization, value semantics.
76 
79 
82 
84  void swap(SparseRCholeskySolver& that);
85 
86 #ifdef MYRAMATH_ENABLE_CPP11
89 #endif
90 
93 
95  explicit SparseRCholeskySolver(InputStream& in);
96 
98  void write(OutputStream& out) const;
99 
100  // ----------------------------------------- Factorization and factorizing constructors.
101 
103  SparseRCholeskySolver(const SRange& A, Options options = defaults());
104  void factor(const SRange& A, Options options = defaults());
105  JobGraph factor_jobgraph(const SRange& A, Options options = defaults());
106 
108  SparseRCholeskySolver(const SRange& A, const Permutation& P, Options options = defaults());
109  void factor(const SRange& A, const Permutation& P, Options options = defaults());
110  JobGraph factor_jobgraph(const SRange& A, const Permutation& P, Options options = defaults());
111 
113  SparseRCholeskySolver(const SRange& A, const AssemblyTree& tree, Options options = defaults());
114  void factor(const SRange& A, const AssemblyTree& tree, Options options = defaults());
115  JobGraph factor_jobgraph(const SRange& A, const AssemblyTree& tree, Options options = defaults());
116 
117  // ----------------------------------------- Linear solution.
118 
120  // side = Solve by A from the 'L'eft or from the 'R'ight?
121  // op = Apply an operation to A? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
122  void solve(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
123  JobGraph solve_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
124 
126  // side = Solve by L from the 'L'eft or from the 'R'ight?
127  // op = Apply an operation to L? ('T'ranspose, 'H'ermitian, 'C'onjugate or 'N'othing)
128  void solveL(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
129  JobGraph solveL_jobgraph(const DRange& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
130 
131  // ----------------------------------------- Calculating schur complements.
132 
134  LowerMatrix<Number> schur(const SRange& B, Options options = defaults()) const;
135  void schur_inplace(const SRange& B, const LRange& S, Options options = defaults()) const;
136  JobGraph schur_jobgraph(const SRange& B, const LRange& S, Options options = defaults()) const;
137 
139  LowerMatrix<Number> schur(const iRange& Bi, const DRange& Bv, Options options = defaults()) const;
140  void schur_inplace(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
141  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const LRange& S, Options options = defaults()) const;
142 
144  Matrix<Number> schur(const SRange& B, const SRange& C, Options options = defaults()) const;
145  void schur_inplace(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
146  JobGraph schur_jobgraph(const SRange& B, const SRange& C, const DRange& S, Options options = defaults()) const;
147 
149  Matrix<Number> schur(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, Options options = defaults()) const;
150  void schur_inplace(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
151  JobGraph schur_jobgraph(const iRange& Bi, const DRange& Bv, const iRange& Ci, const DRange& Cv, const DRange& S, Options options = defaults()) const;
152 
153  // ----------------------------------------- Sampling inv(A).
154 
156  Number inverse(int ij) const;
157 
159  Number inverse(int i, int j) const;
160 
162  Matrix<Number> inverse(const iRange& i, const iRange& j, Options options = defaults()) const;
163  void inverse_inplace(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
164  JobGraph inverse_jobgraph(const iRange& i, const iRange& j, const DRange& Z, Options options = defaults()) const;
165 
167  LowerMatrix<Number> inverse(const iRange& ij, Options options = defaults()) const;
168  void inverse_inplace(const iRange& ij, const LRange& Z, Options options = defaults()) const;
169  JobGraph inverse_jobgraph(const iRange& ij, const LRange& Z, Options options = defaults()) const;
170 
171  // ----------------------------------------- Partial linear solution.
172 
174  // Note X = partialsolve(linspace(0,N),linspace(0,N),B,side,op) yields the same result X = solve(B,side,op)
175  // Note X = partialsolve(i,j,B,'L'eft, op) yields the same result as X = op(this->inverse(i,j))*B
176  // Note X = partialsolve(i,j,B,'R'ight,op) yields the same result as X = B*op(this->inverse(i,j))
177  Matrix<Number> partialsolve(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
178  void partialsolve_inplace(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
179  JobGraph partialsolve_jobgraph(const iRange& i, const iRange& j, const CMatrixRange<Number>& B, const MatrixRange<Number>& X, char side = 'L', char op = 'N', Options options = defaults().set_nthreads(1)) const;
180 
181  // ----------------------------------------- Miscellany.
182 
184  int size() const;
185 
187  const AssemblyTree& tree() const;
188 
190  static Options defaults();
191 
192  private:
193 
194  // Numeric contents.
196  typedef multifrontal::detail::llt::LContainer<Kernel> LContainer;
197  LContainer L;
198 
199  };
200 
202 template<class Precision> class ReflectNumber <SparseRCholeskySolver<Precision> >
203  { public: typedef Precision type; };
204 
206 LIBPUBLIC Vector<NumberS> operator * (const SparseRCholeskySolver<NumberS>& solver, const CVectorRange<NumberS>& x);
208 LIBPUBLIC Vector<NumberD> operator * (const SparseRCholeskySolver<NumberD>& solver, const CVectorRange<NumberD>& x);
210 
212 LIBPUBLIC Matrix<NumberS> operator * (const SparseRCholeskySolver<NumberS>& solver, const CMatrixRange<NumberS>& X);
214 LIBPUBLIC Matrix<NumberD> operator * (const SparseRCholeskySolver<NumberD>& solver, const CMatrixRange<NumberD>& X);
216 
217 } // namespace myra
218 
219 #endif
Reflects Number trait for a Container, containers of Numbers (Matrix&#39;s, Vector&#39;s, etc) should special...
Definition: Number.h:55
Options pack for routines in /multifrontal.
Definition: Options.h:24
Represents a Permutation matrix, used to reorder rows/columns/etc of various numeric containers...
Definition: Permutation.h:34
Symbolic analysis data structure for all multifrontal solvers.
Definition: AssemblyTree.h:38
Represents a mutable LowerMatrixRange.
Definition: conjugate.h:28
Tabulates an IxJ matrix. Allows random access, has column major layout to be compatible with BLAS/LAP...
Definition: bdsqr.h:20
Type erasure class that wraps JobGraphBase, gives it value semantics.
Definition: JobGraph.h:64
Definition: syntax.dox:1
Represents a const MatrixRange.
Definition: bothcat.h:22
Abstraction layer, serializable objects write themselves to these.
Definition: Streams.h:39
Abstraction for representing a directed acyclic graph of Job&#39;s.
Various utility functions/classes related to scalar Number types.
Pivot factorization for SparseRCholeskySolver.
Represents a mutable MatrixRange.
Definition: conjugate.h:26
Abstraction layer, deserializable objects read themselves from these.
Definition: Streams.h:47
Represents a const SparseMatrixRange.
Definition: bothcat.h:24
Options pack for routines in /multifrontal.
Tabulates a vector of length N, allows random access.
Definition: conjugate.h:21
Represents a const VectorRange.
Definition: axpy.h:20
Sparse direct solver suitable for real symmetric positive definite systems.
Definition: SparseRCholeskySolver.h:61
Factors A into L*L&#39;, presents solve methods.
Definition: Kernel.h:34
Stores a lower triangular matrix in rectangular packed format.
Definition: conjugate.h:22
Represents a const intRange.
Definition: intRange.h:142